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Allyl- and benzyl-trifluoroborates can be applied to the photoreaction of carbonyl compounds to afford
the corresponding alcoholic adducts in acceptable yields via a photo-induced single electron transfer
pathway. The results were confirmed from the reaction selectivity and the negative free energy change
for the electron transfer process.
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1. Introduction [5,6], we employed these substrates for a photoreaction with
Organotrifluoroborates are known as air- and water-stable re-
agents and thus can be stored and handled easily [1]. In addition,
some of them are either commercially available or can be readily
prepared. They are currently used in a wide variety of applications
in synthetic chemistry, transition metal catalyzed coupling reac-
tions [2] (e.g., Suzuki–Miyaura coupling [3]), Lewis acid promoted
allylation and other C–C bond formation reactions [1].

The stability of the organotrifluoroborates is due to the tetra-
coordination of the boron atom, which is coordinatively saturated,
and thus they possess an electron-rich character. Therefore, we
anticipated its effectiveness as an electron-donating reagent in
reactions via a photoinduced electron transfer (PET) process [4].
Previously, we reported photochemical allylation of carbonyl com-
pounds via PET from allyltin reagents [5]. More recently, we used it
in a similar photoreaction with silicon-based reagents [6] wherein
extra coordination to the silicon atom (penta- or hexa-coordina-
tion) was the key to the effective PET. Here, we report that the
photo-induced allylation and benzylation of carbonyl compounds
can be further applied successfully to organotrifluoroborates [7].

2. Results and discussion

Because 1,2-dicarbonyl compounds are good substrates for a
photoreaction via the PET mechanism with tin and silicon reagents
All rights reserved.

ishigaichi).
potassium allyl- and benzyl-trifluoroborate 1 and 2 (Scheme 1). Ta-
ble 1 summarizes the results.

In all reactions conducted here, more than 80% of the substrates
were consumed and the corresponding allyl- and benzyl-adducts
were obtained in various yields. Methyl benzoylformate 3a affor-
ded the corresponding adducts in low yields (Entries 1 and 6).
We did not obtain any products derived from the ester moiety.
Aromatic diketones 3b and 3c afforded the corresponding adducts
in good yields. Interestingly, phenylpropanedione 3b, a non-sym-
metrical diketone, preferentially reacted with the aromatic ketone
moiety (Entries 2 and 7), which is less reactive in the thermal reac-
tion [5c]. Quinones 3d (acenaphthenequinone) and 3e (9,10-phen-
anthrenequinone) afforded higher yields of the corresponding
adducts (Entries 4, 5, 9 and 10). These reactions proceeded photo-
chemically, confirmed by the fact that no reaction occurred with-
out photoirradiation at room temperature. Considering the
reduction potentials of the carbonyl compounds (Table 2) [8,9],
the more strongly electron-accepting substrate afforded higher
yield of the product. Therefore, the PET mechanism is the most
probable.

As stated in our previous reports, that c-substituted allylic re-
agents preferentially afforded the a-adduct, which was derived
from the reaction at the less crowded terminal of the allylic radical
intermediate, is a characteristic feature of the photo-allylation
[5a,10]. If the thermal allylation proceeded, the c-adduct would
be preferentially obtained as in the allylborane chemistry [11].
To confirm the mechanism and to expand the scope, the photore-
action of c-substituted allyltrifluoroborates were attempted.
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Table 2
Reduction potentials, excitation energies, and free energy changes for the PET.a

Carbonyl comp. Ered/Vb DET/kcal mol�1 DG/kcal mol�1

3a �1.23 66 [9a] �13.5
3b �1.24 54.4 [9b] �1.7
3c �1.13 54.2 [9c] �4.0
3d �0.91 51.8 [9d] �6.8
3e �0.65 51.3 [9d] �12.1
10 �1.59 68.6 [9c] �7.7

a For PET with 1 (Eox = +1.10 V).
b vs. SCE.

Table 3
Regioselectivity in photo-allylation with c-substituted allyl-trifluoroboratesa

.

Entry Borate Carbonyl comp. Yields of adducts (a/c)/%

1 8 3c 44/9
2 3d 47/17
3 3e 85/tr
4 9 3c 65/17
5 3d 55/33
6 3e 67/tr

a Reaction conditions: hm (k > 400 nm), CH3CN, N2, 5 h.

Scheme 2. Reaction of benzophenone.

Scheme 3. Proposed reaction path.

Scheme 1. Photo-induced allylation and benzylation of 1,2-dicarbonyl compounds.

Table 1
Photo-induced allylation and benzylation of 1,2-dicarbonyl compounds.a

Entry Borate Carbonyl comp. Yield of 4, 5 (6, 7)/%

1 1 3a 21
2 3b 49 (19)
3 3c 58
4 3d 78
5 3e 91
6 2 3a 34
7 3b 62 (21)
8 3c 74
9 3d 90
10 3e 90

a Reaction conditions: hm (k > 400 nm), CH3CN, N2, 5 h.

3838 Y. Nishigaichi et al. / Journal of Organometallic Chemistry 694 (2009) 3837–3839
Mono-substituted cinnamylborate 8 and di-substituted prenyl
borate 9 were employed as shown in Table 3.

Evidently, a-adducts were preferentially obtained as expected
in good yields. The present a/c ratios were similar to those ob-
served in the reactions with tin and silicon reagents. Interestingly,
in the case of the substrate 3e, only a-adducts were obtained in
both cinnamyl and prenyl additions (Entries 3 and 6).

The photo-allylation and photo-benzylation was also applied to
an aromatic mono-ketone, however the efficiency appreciably de-
creased. As shown in Scheme 2, photoirradiation (k > 330 nm) of
benzophenone 10 with 1 in CH3CN afforded 21% of the correspond-
ing allyl adduct. Photo-benzylation with 2, in turn, gave 25% of the
benzyl-adduct. In both reactions, considerable amount of pinacol
was also obtained as a by-product.

Scheme 3 depicts the plausible reaction pathway. As mentioned
above, the PET process should be crucial. A photo-excited carbonyl
compound is more reducible from its excitation energy than its
ground state. Then a PET toward it from an organotrifluoroborate
can occur exothermally because the free energy change DG for
the PET was estimated to be negative by the Rehm–Weller equa-
tion [12] given the oxidation potentials of the borates [13]. Table
2 also summarizes the calculated values of DG for the reactions
of borate 1, which had less electron-donating potential than 2. A
nucleophile such as the substrate and/or the solvent most likely
cleaved the radical species of the borate reagent, and the resulting
organo-radical coupled with the ketyl radical to give the adduct.
The results shown in Table 1 (Entries 2 and 7) and Table 3 are very
consistent with this reaction path. The higher reactivity of the ben-
zoyl moiety indicates that the preferred resonance stabilization of
the intermediate via the PET path determined the major product,
and the a-selectivity of the allyl moiety implies the prior C–B bond
cleavage to the C–C bond formation. The fact that a small amount
of bibenzyl was observed in the reactions of 2 further supported
the radicallic path. Rather low yields of the adduct for the reactions
of 3a and 10 could be attributed to their high triplet energies (Ta-
ble 2) [9]; these substrates might also have undergone other pho-
toreactions such as hydrogen abstraction [14].

3. Conclusion

Allyl- and benzyl-trifluoroborate reagents are found to be ap-
plied successfully to the photo-induced allylation and benzylation
reactions of aromatic carbonyl compounds. We are currently work-
ing to extend the scope of this photoreaction to other substrates
and to apply natural product synthesis, taking advantage of their
ionic characters.

4. Experimental

A mixture of a carbonyl compound (3, 0.2 mmol) and allyl- and
benzyl-trifluoroborate (1 and 2, 0.3 mmol) in dry acetonitrile
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(10 mL) was degassed by bubbling nitrogen in a Pyrex test tube,
which was irradiated for 5 h with a high pressure mercury lamp
(300 W) through an appropriate filter solution under a nitrogen
atmosphere at room temperature. After concentrating the reaction
mixture under reduced pressure, the residue was chromatographed
on a silica gel TLC plate to isolate the corresponding products.
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